Search results for "field theory: scalar"

showing 3 items of 3 documents

Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

2020

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…

High Energy Physics - Theorydimension: 4space-time: SchwarzschildField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)coupling: scalarcoupling: minimal01 natural sciencesGeneral Relativity and Quantum Cosmologyrenormalizationvacuum stateGeneral Relativity and Quantum Cosmologyblack hole: formation0103 physical sciencesStress–energy tensorsymmetry: rotationTensordimension: 2010306 general physicsMathematical physicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsshell modelfield theory: scalarfield theory in curved spacegravitation: collapseBlack holeFormal aspects of field theoryUnruh effectHigh Energy Physics - Theory (hep-th)tensor: energy-momentum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]quantizationSchwarzschild radiusScalar fieldPhysical Review D
researchProduct

Violation of the equivalence principle from light scalar dark matter

2018

In this paper, we study the local observational consequences of a violation of the Einstein Equivalence Principle induced by models of light scalar Dark Matter (DM). We focus on two different models where the scalar field couples linearly or quadratically to the standard model of matter fields. For both these cases, we derive the solutions of the scalar field. We also derive from first principles the expressions for two types of observables: (i) the local comparison of two atomic sensors that are differently sensitive to the constants of Nature and (ii) the local differential acceleration between two test-masses with different compositions. For the linear coupling, we recover that the signa…

General relativityAtomic Physics (physics.atom-ph)Dark matteralternative theories of gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)local position invariance01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics - Atomic Physicsspace-time: oscillationdark matter: couplingGravitationTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)Gravitational field0103 physical sciencesDark Matteruniversalityequivalence principle: violationdark matter: scalarEquivalence principle010306 general physicsmodified gravityPhysics010308 nuclear & particles physicsScalar (physics)Yukawa potentialtorsioncoupling: linearuniversality of free fall[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]field theory: scalarHigh Energy Physics - Phenomenologypotential: YukawaGeneral relativitytests of gravitygravitation[SDU]Sciences of the Universe [physics][PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]expansion: accelerationScalar field
researchProduct

Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities

2016

We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we f…

High Energy Physics - Theoryblack hole: rotationeffect: quantumvelocitysemiclassicalEvent horizonperturbationspace-time: black holeGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)angular momentum01 natural sciencesErgospherePenrose processGeneral Relativity and Quantum Cosmologyhorizon[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]black hole: BTZGeneral Relativity and Quantum CosmologyQuantum mechanics0103 physical sciencescurvature: singularity010306 general physicsRing singularityPhysics010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]formationNaked singularitycoupling: conformalstabilityfield theory: scalarBlack holeClassical mechanicsHigh Energy Physics - Theory (hep-th)Apparent horizonback reaction: quantum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]massGravitational singularitysuperradianceblack hole: geometry
researchProduct